红岩的主要人物

岳池县服装厂-岳池西装定制店哪家好点

1、江姐

江姐是《红岩》中比较丰满的艺术典型。作为一个地下工作者,她有着丰富的经验和高度的警惕。在重庆的朝阳码头,她看到甫志高穿着西装给她掮行李,当即识破了甫志高好表现的心理,表现了她高度的党性。

在赴华蓥山的途中,她看到了挂在城头上的丈夫的头颅,悲痛欲绝,但她以坚强的革命意志和非凡的毅力克制自己的感情,并化悲痛为力量,勇敢地担负起丈夫未竞的事业。作为一个坚定的共产主义战士,她视如归,宁折不弯。

面对敌人惨无人道的酷刑,她忍受百般折磨,对党的秘密守口如瓶。行将就义,她神态平静,举止从容,梳理头发,整理衣衫,吻别“监狱之花”,始终带着胜利的笑容。“

如果需要为共产主义理想而牺牲,我们每个人,都应该,也可以做到脸不变色,心不跳”,这一席话,充分展示了江姐作为共产主义战士的生观。

2、许云峰

许云峰是作者着力刻画的人物之一。他是我的领导者,在他身上比较集中地体现了无产阶级革命者的才干、品质和气魄。

他在作品中一出现就是一个坚定、勇敢、老练、机智的领导者。他一到沙坪书店,发现书店有两个来历不明的人,立刻意识到“危险就在眼前”,于是当机立断,撤销联络站,转移人员,掩护革命同志,一切处理得有条不紊。

许云峰坚强勇敢,毫不畏惧,关键时刻挺身而出。他与中国***的地下工作者李敬原在新生茶园碰头,叛徒甫之高带领特务突然袭击,许云峰不顾个人安危,挺身而出,沉着掩护革命同志,自己被捕入狱。表现了革命者的高风亮节。

许云峰足智多谋,立场坚定,具有非凡的胆识和善于应付瞬息万变的局势的才能。在狱中,他巧妙地引导徐鹏飞作出错误的判断,承担《挺进报》的领导责任,保护了组织。

面对敌人惊心设计的酒宴,随机应变,戳穿了敌人的阴谋,把筵席变成了揭露敌人的讲台,机智地引出特务头子毛人凤出场。表现出***人的无敌力量。

许云峰具有压倒任何敌人而不被敌人压倒的大无畏气概和勇于献身的崇高精神。在狱中,他与徐鹏飞进行了针锋相对的斗争,他赤手空拳以顽强的毅力挖通了监狱通向狱外的洞口,并把它留给了战友,自己带着必胜的信念从容就义。

3、成岗

成岗真名陈然 ,1939年春天在湖北宜昌加入中国***。1947年7月起参加重庆市委地下刊物《挺进报》的编辑、印刷和发行工作,不久重新入党,任《挺进报》特支书记。

1948年4月在工作间被捕,先后关押于歌乐山重庆军统集中营渣滓洞、白公馆看守所,在狱中受尽酷刑,坚贞不屈,并坚持出版《挺进报》。1949年12月28日在重庆大坪刑场被公开枪杀,壮烈牺牲。牺牲时年仅26岁。

以下是陈然在编辑《彷徨》杂志时撰写的一篇题为《论气节》的散文的摘录: 在平时能安贫乐道,坚守自己的岗位;在富贵荣华的诱惑之下能不动心志;在狂风暴雨袭击之下能坚定信念,为党做出了很大的贡献。

4、小萝卜头

小萝卜头,原名宋振中,男,1941年生于江苏邳州,1949年9月在重庆被杨钦典害,遇害时年仅8岁,是时期的最小的战士。

宋振中八个月的时候,就随父母被带进了监狱。由于终年住在阴暗、潮湿的牢房里,再加上营养跟不上,七八岁却只有四五岁孩子那么高,成了一个大头细身子、面黄肌瘦的孩子,难友们都疼爱地叫他“小萝卜头”。

小萝卜头在敌人的监狱里长大,一直不知道外面的世界是什么样。经过对特务的斗争,他才在监狱里上了学,由员和爱国志士作他的老师。由于他年龄小,特务们对他的看管不是很严,他就经常在牢房之间传递东西、传递信息和秘密情报,在门口放哨,帮助大人了解入狱同志的情况等。

在革命胜利前夕,小萝卜头被敌人残忍。重庆解放后,小萝卜头宋振中被追认为革命烈士,他是共和国、乃至世界上最小的烈士,他的英名将永远被后人铭记。

5、双枪老太婆

双枪老太婆是著名小说《红岩》中塑造的传奇人物,为华蓥山游击队的成员,因善使双枪被誉为双枪老太婆。其人物原型为陈联诗。

陈联诗(1900年~1960年),女,又名陈玉屏,四川广安岳池县人,川东华蓥山游击纵队的主要创建者与领导者之一,多次参与并领导华蓥山武装起义,为中国近代的革命事业做出了卓越的贡献。

因陈联诗善使双枪,故被世人称为“双枪老太婆”。据著名小说《红岩》的作者杨益言先生讲诉,陈联诗为《红岩》中“双枪老太婆”的原型之一。

百度百科-红岩

重庆小面好吃吗?

狭义上的重庆小面指的是只有面条和佐料的素面,广义上则是包括了各种臊子(浇头)的面条总称。

1.机器碱面

如今,重庆小面选用的原料仍以机器碱面为主,根据各店需求,制成细面、韭叶面(与韭菜叶宽度相似)、宽面等不同规格。

2.N+1种佐料

一碗合格的小面,起码有十几种佐料。盐、酱油、味精、油辣子海椒、花椒面、姜蒜水、猪油、葱花、芽菜、芝麻酱、花生碎……这些可见的佐料通常是每家面馆的必备。至于其它配料,各家有各家的秘方。

3.灵魂伴侣

重庆小面的灵魂搭档有两个,一是夏季的主角藤藤菜,二是冬季的明星豌豆颠儿。

4.由小面生发出来的各种臊子面,是肉食爱好者的福音。按浇头的味道,大致可分为杂酱、红烧、泡椒、酸菜和混合味。

七年级数学一元一次方程解应用题50题,

1将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4 小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时 才能完成工作?

2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80?毫米的长 方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求 圆柱形水桶的高(精确到0.1毫米,?≈3.14) . 4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比 过第一铁桥需多5秒, 又知第二铁桥的长度比第一铁桥长度的2倍短50米, 试求各铁桥的长.

5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,?这种 三色冰淇淋中咖啡色、红色和白色配料分别是多少克

6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这 16名工人中,一部分人加工甲种零件,其余的加工乙种零件.?已知每加工 一个甲种零件可获利16元, 每加工一个乙种零件可获利24元. 若此车间一 共获利1440元,?求这一天有几个工人加工甲种零件.

7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千 瓦时,则超过部分按基本电价的70%收费. (1)某户八月份用电84千瓦时,共交电费30.72元,求a. (2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?? 应交电费是多少元?

8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3? 种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元. (1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元, 请你研究一下商场的进货方案. (2) 若商场销售一台A种电视机可获利150元, 销售一台B种电视机可获 利200元, ?销售一台C种电视机可获利250元, 在同时购进两种不同型号的 电视机方案中,为了使销售时获利最多,你选择哪种方案?

答案

1解:设甲、乙一起做还需x小时才能完成工作. 根据题意,得 1 6 × 1 2 +( 1 6 + 1 4 )x=1 解这个方程,得x= 11 5 11 5 =2小时12分 答:甲、乙一起做还需2小时12分才能完成工作.

2.解:设x年后,兄的年龄是弟的年龄的2倍, 则x年后兄的年龄是15+x,弟的年龄是9+x. 由题意,得2×(9+x)=15+x 18+2x=15+x,2x-x=15-18 ∴x=-3 答:3年前兄的年龄是弟的年龄的2倍. (点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3?年 后具有相反意义的量)

3.解:设圆柱形水桶的高为x毫米,依题意,得 ? · ( 200 2 )2 x=300×300×80 x≈229.3 答:圆柱形水桶的高约为229.3毫米.

4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,?过完第一铁桥所需 的时间为 600 x 分. 过完第二铁桥所需的时间为 250 600 x?分. 依题意,可列出方程 600 x + 5 60 = 250 600 x? 解方程x+50=2x-50 得x=100 ∴2x-50=2×100-50=150 答:第一铁桥长100米,第二铁桥长150米.

5.解:设这种三色冰淇淋中咖啡色配料为2x克, 那么红色和白色配料分别为3x克和5x克. 根据题意,得2x+3x+5x=50 解这个方程,得x=5 于是2x=10,3x=15,5x=25 答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.

6.解设这一天有x名工人加工甲种零件, 则这天加工甲种零件有5x个,乙种零件有4(16-x)个. 根据题意,得16×5x+24×4(16-x)=1440 解得x=6 答:这一天有6名工人加工甲种零件.

7.解(1)由题意,得 0.4a+(84-a)×0.40×70%=30.72 解得a=60 (2)设九月份共用电x千瓦时,则 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90 所以0.36×90=32.40(元) 答:九月份共用电90千瓦时,应交电费32.40元.

8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算, 设购A种电视机x台,则B种电视机y台. (1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程 1500x+2100(50-x)=90000 即5x+7(50-x)=300 2x=50 x=25 50-x=25 ②当选购A,C两种电视机时,C种电视机购(50-x)台, 可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x=15 ③当购B,C两种电视机时,C种电视机为(50-y)台. 可得方程2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意 由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台. (2)若选(1)中的方案①,可获利 150×25+250×15=8750元 若选择(1)中的方案②,可获利 150×35+250×15=9000元 9000>8750 故为了获利最多.

下面是没有答案的题目 仅供参考啦!!!!!!

(一)行程问题:

1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。

2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。

3. 某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?

4.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,t等于 分钟.

5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?

6.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车人的时间是26秒。

(1)行人的速度为每秒多少米;(2)求这列火车的身长是多少米。

7.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?

8.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度60公里/小时,我们的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。出发地到目的地的距离是60公里。问:步行者在出发后经多少时间与回头接他们的汽车相遇

(汽车掉头的时间忽略不计)?

时钟问题:

10.在6点和7点间,何时时钟分针和时针重合?(教材复习题)

行船问题:

12. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?

13.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。

(二)工程问题:

1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?

2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?

3.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;

(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?

(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?

(3)如果将两管同时打开,每小时的效果如何?如何列式?

(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?

4.有一个水池,用两个水管注水。如果单开甲管,2小时30分注满水池,如果单开

乙管,5小时注满水池。

① 如果甲、乙两管先同时注水20分钟,然后由乙单独注水。问还需要多少时间才能把

水池注满?

② 假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。如果三

管同时开放,多少小时才能把一空池注满水?

(三)和差倍分问题(生产、做工等各类问题):

1.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。

2.岳池县城某居民小区的水、电、气的价格是: 水每吨1.55元, 电每度0.67元, 天然气每立方米1.47元. 某居民户在2006年11月份支付款67.54元, 其中包括用了5吨水、35度电和一些天然气的费用, 还包括交给物业管理4.00元的服务费. 问该居民户在2006年11月份用子多少立方米天然气?

3.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.

(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费?(列代数式,不化简)(8分)

(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?

4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?

5.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?

6.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件?

7.某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?

8.为了搞好水利建设,某村计划修建一条长800米,横断面是等腰梯形的水渠.

(1)设计横断面面积为1.6米2,渠深1米,水渠的上口宽比渠底多0.8米,求水渠上口宽和渠底宽;

(2)某施工队承建这项工程,计划在规定的时间内完成,工作4天后,改善了设备,提高了工效,每天比原计划多挖水渠10米,结果比规定的时间提前2天完成任务,求计划完成这项工程需要的天数。

10.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 道题。

11.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?

年龄问题:

12.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.

13.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄

比例问题:

14.图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。

15.一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?

16.魏老师到市场去买菜,发现若把10千克的菜放到秤上,指针盘上的指针转了180°.如图,第二天魏老师就给同学们出了两个问题:

(1)如果把0.5千克的菜放在秤上,指针转过多少角度?

(2)如果指针转了540,这些菜有多少千克?

(四)调配问题:

1.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。求甲、乙两队原有人数各多少人?

3.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

(五)分配问题:

4.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。

5.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?

6.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。

(六)配套问题:

1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?

2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?

3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。

4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

5.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?

(七)增长率问题:

1.某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产 %

2.某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x公斤,则列出的正确的方程是

3.某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?

4.甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?

6.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价。

利润与利润率:

7.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,结果每件仍获利15元,这种服装每件的成本为_________.

8.某件商品9折降价销售后每件商品售价为元,则该商品每件原价为( )

一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。

9.某商场将进价为每件X元的上衣标价为m元,在此基础上再降价10%,顾客需付款270元。已知进价x元时标价m元的60%,则x的值是( )

10.某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______.

11.如果某商品进价的降低5%,而售价不变,利润率可提高15个百分点,求此商品的原来的利润率

12.某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。问该文具的进价是每件多少元?

13.杉杉打火机厂生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每只的成本降低了     .(精确到元.毛利率=)

14.某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?

15.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

16.妈妈带小明到文具店买书包和文具盒,经过讨价还价,原价42元的书包打九折,原价18元的文具盒打八折。他们一共要付 元

17.某种商品的市场需求量D(千件)与单价p(元/件)服从需求关系: .问:

(1)当单价为4元时,市场需求量是多少?

(2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化?

18.八一体育馆设计一个由相同的正方体搭成的标志物(如图所示),每个正方体的棱长为1米,其暴露在外面的面(不包括最底层的面)用五夹板钉制而成,然后刷漆。每张五夹板可做两个面,每平方米用漆500克.

(1)建材商店将一张五夹板按成本价提高40%后标价,又以8折优惠卖出,结果每张仍获利4.8元(五夹板必须整张购买):

(2)油漆店开展“满100送20,多买多送的酬宾活动”,所购漆的售价为每千克34元.试问购买五夹板和油漆共需多少钱?

19.莉莉的叔叔将打工挣来的25000元钱存入银行,整存整取三年,年利率为3.24%,三年后本金和利息共有 元(不计利息税)

本人三年前存了一份3000元的教育储蓄,今年到期时的本利和为3243元,请你帮我算一算这种储蓄的年利率。若年利率为x%,则可列方程__________________________。(年存储利息=本金×年利率×年数)

1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

2.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。

3.将连续的奇数1,3,5,7,9…,排成如下的数表:

(1)十字框中的五个数的平均数与15有什么关系?

(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.

(九)几何问题:

1.一个长方形的周长长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为cm,可列方程是

2.在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?

3.将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。

4.将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?

5.如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分的面积为224cm2,求重叠部分面积。

(十)方案设计与成本分析:

1.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。

当地一家农工商企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行细加工,每天可以加工6吨,但两种加工方式不能同时进行。受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了三种可行方案。

方案一:将蔬菜全部进行粗加工;

方案二:尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;

方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天。

你认为哪种方案获利最多?为什么

2.牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.

请你帮牛奶加工厂设计一种方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润.

3.某市剧院举办大型文艺演出,其门票价格为:一等席300元/人,二等席200元/人,三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。

4.某市的出租车计价规则如下:行程不超过3km,收起步价8元,超过部分每千米收费1.2元.某天张老师和三位学生去看望一学生,共乘了11km, 请你算一下张老师应付车费 元。

5.据《楚天都市报》消息,武汉市居民生活用水价格将进行自1999年以来的第四次调整,试行居民生活用水阶梯式计量水价.拟定城市居民用水户(户籍人口4人及以内)每月用水量在22立方米及以内的,为第一级水量基数,按调整后的居民生活用水价格收取;超过22立方米且低于30立方米(含30立方米)的部分为第二级水量基数,按调整后价格的1.5倍收取;超过30立方米的部分为第三级水量基数,按调整后价格的2倍收取.已知调整后居民生活用水价格由现行的每立方米1.51元拟上涨到1.96元.市民张先生一家三口人,他按自己家庭月均用水量计算了一下,按目前新价格,他一个月要缴纳74.48元水费.请问张先生一家月均用水量是多少立方米?和调整前比较,他家每月平均多缴纳多少元水费?

6.小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)

7.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠。该班需球拍5副,乒乓球若干盒(不小于5盒)。问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?

8.某单位急需用车,但又不需买车,他们准备和一个个体车或一国营出租公司中的一家鉴定月租车合同,个体车主的收费是3元/千米,国营出租公司的月租费为2000元,另外每行驶1千米收2元,试根据形式的路程的多少讨论用哪个公司的车比较合算?

9.某农户2000年承包荒山若干公顷,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg,此水果在市场上每千克售a元,在果园每千克售b元(b<a),该农户将水果运到市场出售,平均每天出售1000kg,需8人帮助,每人每天付工资25元,汽车运费及其它各项税费平均每天100元。

①分别用a、b表示用两种方式出售水果的收入。

②若a=1.3元,b=1.1元,且两种出售水果方式都在相同时间内售完全部水果,请通过计算说明,选择哪种出售方式较好?

10.育才中学需要添置某种教学仪器, 方案1: 到商家购买, 每件需要8元; 方案2: 学校自己制作, 每件4元, 另外需要制作工具的月租费120元, 设需要仪器x件.

(1)试用含x的代数式表示出两种方案所需的费用; (2)当所需仪器为多少件时, 两种方案所需费用一样多? (3)当所需仪器为多少件时, 选择哪种方案所需费用较少? 说明理由.

11.某电信公司开设了甲、乙两种市内移动通信业务。甲种使用者每月需缴15元月租费,然后每通话1分钟, 再付话费0.3元; 乙种使用者不缴月租费, 每通话1分钟, 付话费0.6元。若一个月内通话时间为x分钟, 甲、乙两种的费用分别为y1和y2元。

(1)、试求一个人要打电话30分钟,他应该选择那种通信业务?

(2)、根据一个月通话时间,你认为选用哪种通信业务更优惠?

12.某校校长在国庆节带领该校市级“三好学生”外出旅游,甲旅行社说“如果校长买一张票,则其余学生可享受半价优惠”,乙旅行社说“包括校长在内全部按票价的6折优惠”(即按票的60%收费)。现在全票价为240元,学生数为5人,请算一下哪家旅行社优惠?你喜欢哪家旅行社?如果是一位校长,两名学生呢?

以上是本人竭尽全力寻找的题目然后进行了归类整理的结果,希望可以对你有所帮助啊!!!!

仅供参考!!!!!!祝你好运啦!!!!!!!!!!!!!!!!!!!!!!!!!!